Vai al contenuto principale
Coronavirus: aggiornamenti per la comunità universitaria / Coronavirus: updates for UniTo Community
Oggetto:
Oggetto:

Calcolo Numerico

Oggetto:

Numerical Methods

Oggetto:

Anno accademico 2016/2017

Codice dell'attività didattica
MFN0649
Docenti
Prof. Vittoria Demichelis (Titolare del corso)
Prof. Roberto Cavoretto (Titolare del corso)
Corso di studi
Scienza e Tecnologia dei Materiali
Anno
1° anno
Periodo didattico
Primo semestre
Tipologia
Affine o integrativo
Crediti/Valenza
8
SSD dell'attività didattica
MAT/08 - analisi numerica
Modalità di erogazione
Tradizionale
Lingua di insegnamento
Italiano
Modalità di frequenza
Frequenza alle lezioni facoltativa. Frequenza al laboratorio obbligatoria
Tipologia d'esame
Orale
Prerequisiti
Nozioni di Analisi Matematica acquisite nel corso di Matematica.

Prerequisites
Elements of Calculus from the course “Mathematics”

Oggetto:

Sommario insegnamento

Oggetto:

Obiettivi formativi

 L'insegnamento  si propone  di fornire agli studenti le nozioni di base sui seguenti argomenti:

●  linguaggio di programmazione Matlab  e  rappresentazione dei numeri in un calcolatore;

● statistica descrittiva e distribuzione di probabilità normale;

 ● calcolo con le matrici ed algebra lineare numerica;

 ● alcuni fra i principali metodi numerici per l’interpolazione polinomiale, l’approssimazione polinomiale ai minimi quadrati, l’integrazione  e la risoluzione di equazioni differenziali.

Learning objectives

The course is designed to cover the basic elements of the following topics:

● Matlab programming language and computer representation of
numbers;

● numerical descriptive statistics and normal  distribution function;

● matrix operations and numerical linear algebra;

● numerical methods for  polynomial interpolation, least square polynomial  approximation, integration and solution of differential equations.

 

Oggetto:

Risultati dell'apprendimento attesi

Al termine dell'insegnamento lo studente dovrà essere in grado di descrivere e sintetizzare un insieme di dati sperimentali.  Dovrà conoscere i principali metodi numerici per l’algebra lineare, l’interpolazione, l’approssimazione ai minimi quadrati, l’integrazione e la risoluzione di equazioni differenziali ordinarie. Dovrà sapere implementare  in Matlab gli algoritmi relativi alle tecniche numeriche considerate ed avere la  capacità di risolvere semplici problemi applicativi.

Learning outcomes

The course should  transmit in the student  knowledge and interest on synthesis  and description of experimental data, numerical linear algebra, interpolation, least square approximation, numerical integration and numerical solution of differential equations.
The student is encouraged to implement the algorithms related to the considered methods  by using Matlab and to develop problem-solving skills.

 

Oggetto:

Modalità di insegnamento

Tipologia Insegnamento 

L'insegnamento prevede  48 ore di lezioni frontali e 32 ore di lezioni in aula informatica.

Frequenza

La frequenza alle lezioni in aula informatica è obbligatoria e non può essere inferiore all' 80% delle ore previste.

Course structure

The course includes 48 lectures in lecture room and 32 lectures in computer room.

Compulsory attendance for lectures in computer room

Oggetto:

Modalità di verifica dell'apprendimento

L'esame consiste in una prova orale obbligatoria. Nella determinazione del voto viene anche tenuto conto dell'attività svolta in aula informatica.

Course grade determination

Oral examination. In the determination of course grade, the activity in computer room will be taken into account.

 

 

Orale

Oggetto:

Programma

Introduzione  al linguaggio di programmazione Matlab. Rappresentazione dei numeri in un calcolatore, arrotondamento.

Statistica descrittiva: sintesi dei dati, rappresentazione grafica di una distribuzione di frequenze mediante istogramma e poligono delle frequenze. Misure di tendenza centrale (moda, media e mediana) e indici di dispersione (varianza, deviazione standard e coefficiente di variazione). Probabilità: distribuzione normale, uso delle tavole della distribuzione normale standardizzata.

Matrici e sistemi di equazioni lineari: operazioni fra matrici e loro proprietà, determinanti,  norme di vettori e di matrici. Il metodo di eliminazione di Gauss per la risoluzione di sistemi lineari.

Interpolazione polinomiale di dati e di funzioni.  Approssimazione polinomiale ai minimi quadrati.

Integrazione numerica: le formule di Newton-Cotes, le formule composte dei trapezi e di Simpson.

Problemi ai valori iniziali per equazioni differenziali ordinarie. Metodi ad un passo: metodo di Eulero. Metodi ad un passo e due stadi: metodo di Heun.

Course syllabus.

Introduction  to the programming language Matlab. Machine numbers and rounding.

Numerical Descriptive Statistics: categorical and quantitative data, graphical representation of frequency distributions by histograms, polygons and diagrams. Descriptors of central tendency and dispersion. Probability: the normal distribution function. The table of Standard Normal Distribution function.

Matrices and systems of linear equations: matrix operations and their properties, determinants, vector and matrix norms. The solution of linear systems by Gauss elimination.

Functions and data sets interpolation by polynomials. Polynomial least square approximation.

Numerical integration: Newton-Cotes formulae, the composite trapezoidal and Simpson’s rules.

Initial value problems for ordinary differential equations. One step methods: Euler’s method. One step and two stages methods:  Heun’s method.

 

Testi consigliati e bibliografia

Oggetto:

I testi base consigliati per il corso sono:

 K. Atkinson – Elementary Numerical Analysis – John Wiley & Sons (1993)

 G. Naldi, L. Pareschi – Matlab Concetti e progetti (seconda edizione) – APOGEO  (2007)

 V. Demichelis – Appunti di Calcolo Numerico

 V. Demichelis,  A. Ziggioto, Lezioni di Biostatistica, Quaderno Didattico del Dipartimento di Matematica   n. 36 (2006)

http://www.dipmatematica.unito.it/html/allegati/quadernididattici/biostatistical.pdf

 V. Demichelis,  A. Ziggioto, Esercizi di Biostatistica, Quaderno Didattico del Dipartimento di Matematica n. 37 (2006)

http://www.dipmatematica.unito.it/html/allegati/quadernididattici/biostatistica2.pdf

 E’ consigliato l’utilizzo del seguente materiale per approfondimenti e integrazioni:

 G. Monegato – Metodi e algoritmi per il Calcolo Numerico – CLUT, Torino (2008)

 M. Bramanti – C.D. Pagani – S. Salsa  -  Matematica  –  Zanichelli , Bologna (2000)

 G. Naldi, L. Pareschi, G. Aletti – Matematica I ( Algebra Lineare ) - McGraw-Hill (2003)

Reading materials:

 K. Atkinson – Elementary Numerical Analysis – John Wiley & Sons (1993)

 G. Naldi, L. Pareschi – Matlab Concetti e progetti (seconda edizione) –APOGEO (2007)

 V. Demichelis – Appunti di Calcolo Numerico

 V. Demichelis,  A. Ziggioto, Lezioni di Biostatistica, Quaderno Didattico del Dipartimento di Matematica   n. 36 (2006)

http://www.dipmatematica.unito.it/html/allegati/quadernididattici/biostatistical.pdf

 V. Demichelis,  A. Ziggioto, Esercizi di Biostatistica, Quaderno Didattico del Dipartimento di Matematica n. 37 (2006)

http://www.dipmatematica.unito.it/html/allegati/quadernididattici/biostatistica2.pdf


 Further bibliography

 G. Monegato – Metodi e algoritmi per il Calcolo Numerico – CLUT, Torino (2008)

 M. Bramanti – C.D. Pagani – S. Salsa - Matematica – Zanichelli , Bologna (2000)

 G. Naldi, L. Pareschi, G. Aletti – Matematica I ( Algebra Lineare ) - McGraw-Hill (2003)



Oggetto:

Orario lezioni

Lezioni: dal 28/09/2016 al 20/01/2017

Nota: L'orario dettagliato delle lezioni sarà disponibile alla pagina "Orario Lezioni"
http://stmateriali.campusnet.unito.it/do/lezioni.pl

Oggetto:
Ultimo aggiornamento: 02/07/2016 10:47